Introduction to immudb from one of the core developers

I’ve been working on immudb as a core developer and wanted to answer some questions that the community had in the past. Therefore I have written this blog post series to explain how data is stored in an immutable manner in the database and to understand the data structures (and cryptographic) algorithms used internally.

Immutable databases are used for tracking changes in sensitive data, and for auditing purposes. Tamper-evident data means you can cryptographically prove that the data hasn’t been unexpectedly changed. Knowing the provenance, integrity, and sequence in which your data was created means you’ll be able to monitor that the data has not been modified by an unknown user in an unauthorized way, which simplifies regulatory compliance and audit. This is an essential feature within the scope of many activities that collect critical user information and solve issues like insider attack threats, abuses, and patterns on the system through an audit.

Use cases for system of record applications

A few decades back, storage was expensive, and so was CPU. This is why research in the past on database storage strongly considered storing information efficiently whilst utilizing the least amount of space on disk. Few of the earliest users of databases were finance (and accounting) companies, as it made sense to store their ledger (or accounting) data in a database. Accounting ledgers are immutable. Entries are only appended to the ledger.

Due to disk constraints, many databases added the support to UPDATE a record to utilize the disk efficiently. This is one reason why modern database storage systems are a bit complicated when compared to append-only storage. And this is why they are slow too, as efficient on-disk data management (which requires UPDATES) requires complex data management techniques.

About immudb

immudb is an open-source Immutable Database that supports Cryptographical verification, tamper-resistance, and audit. It has support for both Key-Value and SQL and has high-performance and scalability solutions when compared to its competitors in the market.

Next blog covers how records are being stored in immudb.

Use Case - Tamper-resistant Clinical Trials

Goal:

Blockchain PoCs were unsuccessful due to complexity and lack of developers.

Still the goal of data immutability as well as client verification is a crucial. Furthermore, the system needs to be easy to use and operate (allowing backup, maintenance windows aso.).

Implementation:

immudb is running in different datacenters across the globe. All clinical trial information is stored in immudb either as transactions or the pdf documents as a whole.

Having that single source of truth with versioned, timestamped, and cryptographically verifiable records, enables a whole new way of transparency and trust.

Use Case - Finance

Goal:

Store the source data, the decision and the rule base for financial support from governments timestamped, verifiable.

A very important functionality is the ability to compare the historic decision (based on the past rulebase) with the rulebase at a different date. Fully cryptographic verifiable Time Travel queries are required to be able to achieve that comparison.

Implementation:

While the source data, rulebase and the documented decision are stored in verifiable Blobs in immudb, the transaction is stored using the relational layer of immudb.

That allows the use of immudb’s time travel capabilities to retrieve verified historic data and recalculate with the most recent rulebase.

Use Case - eCommerce and NFT marketplace

Goal:

No matter if it’s an eCommerce platform or NFT marketplace, the goals are similar:

  • High amount of transactions (potentially millions a second)
  • Ability to read and write multiple records within one transaction
  • prevent overwrite or updates on transactions
  • comply with regulations (PCI, GDPR, …)


Implementation:

immudb is typically scaled out using Hyperscaler (i. e. AWS, Google Cloud, Microsoft Azure) distributed across the Globe. Auditors are also distributed to track the verification proof over time. Additionally, the shop or marketplace applications store immudb cryptographic state information. That high level of integrity and tamper-evidence while maintaining a very high transaction speed is key for companies to chose immudb.

Use Case - IoT Sensor Data

Goal:

IoT sensor data received by devices collecting environment data needs to be stored locally in a cryptographically verifiable manner until the data is transferred to a central datacenter. The data integrity needs to be verifiable at any given point in time and while in transit.

Implementation:

immudb runs embedded on the IoT device itself and is consistently audited by external probes. The data transfer to audit is minimal and works even with minimum bandwidth and unreliable connections.

Whenever the IoT devices are connected to a high bandwidth, the data transfer happens to a data center (large immudb deployment) and the source and destination date integrity is fully verified.

Use Case - DevOps Evidence

Goal:

CI/CD and application build logs need to be stored auditable and tamper-evident.
A very high Performance is required as the system should not slow down any build process.
Scalability is key as billions of artifacts are expected within the next years.
Next to a possibility of integrity validation, data needs to be retrievable by pipeline job id or digital asset checksum.

Implementation:

As part of the CI/CD audit functionality, data is stored within immudb using the Key/Value functionality. Key is either the CI/CD job id (i. e. Jenkins or GitLab) or the checksum of the resulting build or container image.

White Paper — Registration

We will also send you the research paper
via email.

CodeNotary — Webinar

White Paper — Registration

Please let us know where we can send the whitepaper on CodeNotary Trusted Software Supply Chain. 

Become a partner

Start Your Trial

Please enter contact information to receive an email with the virtual appliance download instructions.

Start Free Trial

Please enter contact information to receive an email with the free trial details.

Subscribe to our newsletter